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1 Problem setting and statement

Let xt ∈ Rn. Consider a dynamical system of the following form and define some new terms.

xt+1 = f(xt) (1)

• Fixed point: We say that x⋆ is a fixed point of Eq. (1) if f(x⋆) = x⋆. So if xt ever reaches
x⋆, it will stay there for all subsequent t.

• Global asymptotic stability: We say that the point x⋆ is globally asymptotically stable if
for any x0 ∈ Rn, we have limt→∞ xt = x⋆.

• Class KR function: We say that a function ϕ : R+ → R+ is of class KR, written ϕ ∈ KR,
if ϕ is continuous, strictly increasing, and ϕ(0) = 0. Additionally, ϕ is radially unbounded, i.e.,
limp→∞ ϕ(p) = ∞. Class KR functions are invertible ϕ ∈ KR ⇐⇒ ϕ−1 ∈ KR.

Here is a global asymptotic stability result.

Theorem 1. Consider the dynamical system (1). Suppose f is continuous, the origin is a fixed
point, and there exists a continuous function V : Rn → R+ satisfying

(i) V (0) = 0 and there exists ϕ ∈ KR such that for all x ∈ Rn, we have V (x) ≥ ϕ(∥x∥).

(ii) V (f(x))− V (x) < 0 for all x ̸= 0.

Then, the origin is globally asymptotically stable

A function V satisfying the conditions in Theorem 1 is called a Lyapunov function .

This approach of finding a Lyapunov function V to prove stability of a dynamical system is called
Lyapunov’s direct method (a.k.a. Lyapunov’s second method). This is in contrast with Lyapunov’s
indirect method (a.k.a. Lyapunov’s first method), which is a way of deducing stability of a nonlinear
system by studying properties of its linearization.

Before we prove Theorem 1, we will need two important results from real analysis.

Lemma 1 (Monotone Convergence Theorem). Consider the sequence {x0, x1, . . . } ⊆ R.

• If x0 ≥ x1 ≥ . . . (monotonically decreasing), and xk ≥ a for all k (bounded below), then the
sequence converges, and limt→∞ xt = inft≥0 xt.

• If x0 ≤ x1 ≤ . . . (monotonically increasing), and xk ≤ b for all k (bounded above), then the
sequence converges, and limt→∞ xt = supt≥0 xt.

The Monotone Convergence Theorem (MCT) is a sufficient condition for the existence of a limit.
Of course, it is possible for non-monotone sequences to have limits.
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Lemma 2 (Extreme Value Theorem). Suppose S ∈ Rn is closed and bounded and f : S → R is
continuous. Then f achieves a minimum and a maximum on S.

To understand how the Extreme Value Theorem (EVT) manifests itself, consider f(x) = 1/x.

• If we pick S = (0, 1), then f has no maximum on S; we can make f(x) as large as we like by
picking x closer to 0. S is not closed so the EVT does not apply.

• If we pick S = [1,∞), then f has no minimum on S; we can f(x) as small as we like by picking
larger x. S is not bounded so the EVT does not apply.

• If we pick S = [−1, 1], then f has no minimum or maximum on S because of the asymptote
at x = 0. f is not continuous on S, so the EVT does not apply.

• If we pick S = [1, 2], then f has both a minimum and a maximum. The EVT applies because
S is closed and bounded, and f is continuous on S.

The EVT is only a sufficient condition for the existence of extrema. For example, it’s possible to
violate all the requirements of EVT and still attain a maximum and/or minimum value.

2 Proof of Theorem 1

From Item (ii), the sequence V (x0), V (x1), V (x2), . . . is a decreasing sequence and from Item (i), it
is bounded below by zero. By the MCT, this sequence converges to a limit. Let α := limt→∞ V (xt).
We already know α ≥ 0. We will now prove that α = 0 by way of contradiction.

Suppose that α > 0. Consider the set S := {z ∈ Rn | α ≤ V (z) ≤ V (x0)}. This set is closed and
bounded. To see why, we have from Item (i) that V (z) ≤ V (x0) implies ϕ(∥z∥) ≤ V (x0) and
therefore ∥z∥ ≤ ϕ−1(V (x0)). So S is contained inside a ball of radius ϕ−1(V (x0)) and is therefore
bounded.1 S is closed because both endpoints in S are included and V is a continuous function.
Apply the EVT to the continuous function V (f(z)) − V (z) over the set S.2 Let the maximum of
this function over S be β. Since α > 0, all points in S satisfy V (z) > 0, and therefore z ̸= 0. Since
Item (ii) holds strictly, we conclude that β < 0. For any t ≥ 0, we have:

V (xt) = V (x0) +
t∑

k=1

(
V (xk)− V (xk−1)

)
≤ V (x0) + tβ (2)

Since β < 0, if we make t sufficiently large, we can make the right-hand side of Eq. (2) negative,
which would imply that V (xt) < 0, a contradiction. Consequently, our supposition that α > 0 was
incorrect, and therefore α = 0, and limt→∞ V (xt) = 0. By the definition of the limit, we have that
for any ε > 0, there exists a T > 0 such that for all t ≥ T , we have V (xt) < ϕ(ε). Applying Item (i),
this means ϕ(∥xt∥) < ϕ(ε), and therefore ∥xt∥ < ε. Consequently limt→∞ xt = 0. ■

1This is where we use the fact that ϕ is radially unbounded. Without this, ϕ may not be invertible, and we could
end up with an unbounded S.

2Here, we used the fact that f and V are continuous, therefore V (f(z))− f(z) is a continuous function of z.
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3 Exponential stability

We say a fixed point x⋆ of Eq. (1) is globally exponentially stable if there exists c > 0 and
ρ ∈ (0, 1) such that for any initial condition x0 ∈ Rn,

∥xt − x⋆∥ ≤ c ∥x0 − x⋆∥ ρt for all t ≥ 0.

Global exponential stability is stronger than global asymptotic stability, because not only do we
have limt→∞ xt = x⋆, but we also guarantee convergence at an exponential rate. A sequence such
as xt = 1/t converges to zero asymptotically, but not exponentially.

We can modify the assumptions of Theorem 1 to achieve exponential convergence.

Theorem 2. Consider the dynamical system (1). Suppose the origin is a fixed point, and there
exists a function V : Rn → R+ satisfying

(i) There exists p > 0 and α, β > 0 such that α∥x∥p ≤ V (x) ≤ β∥x∥p for all x ∈ Rn.

(ii) There exists 0 < ρ < 1 such that V (f(x))− ρV (x) ≤ 0 for all x ̸= 0.

Then, the origin is globally exponentially stable

Proof. Applying Items (i) and (ii), we have:

α∥xt∥p ≤ V (xt) ≤ ρV (xt−1) ≤ · · · ≤ ρtV (x0) ≤ β∥x0∥pρt.

Rearranging this inequality, we obtain

∥xt∥ ≤
(
β
α

)1/p
∥x0∥

(
ρ1/p

)t
,

so the origin is globally exponentially stable. ■
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