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1 Problem setting and statement

Let x; € R™. Consider a dynamical system of the following form and define some new terms.

xip1 = flag) (1)

o Fized point: We say that x, is a fized point of Eq. (1) if f(z4) = xx. So if x4 ever reaches
Ty, it will stay there for all subsequent .

e Global asymptotic stability: We say that the point xz, is globally asymptotically stable if
for any xgp € R™, we have lim; o ¢ = T4.

e Class KR function: We say that a function ¢ : R. — Ry is of class KR, written ¢ € KR,
if ¢ is continuous, strictly increasing, and ¢(0) = 0. Additionally, ¢ is radially unbounded, i.e.,
limyy 00 ¢(p) = 0o. Class KR functions are invertible ¢ € KR < ¢! € KR.

Here is a global asymptotic stability result.

Theorem 1. Consider the dynamical system (1). Suppose f is continuous, the origin is a fized
point, and there exists a continuous function V : R™ — Ry satisfying

(i) V(0) =0 and there exists ¢ € KR such that for all x € R", we have V(x) > ¢(||z||).
(i) V(f(z)) —V(z) <0 for all x # 0.
Then, the origin is globally asymptotically stable

A function V satisfying the conditions in Theorem 1 is called a Lyapunov function.

This approach of finding a Lyapunov function V to prove stability of a dynamical system is called
Lyapunov’s direct method (a.k.a. Lyapunov’s second method). This is in contrast with Lyapunov’s
indirect method (a.k.a. Lyapunov’s first method), which is a way of deducing stability of a nonlinear
system by studying properties of its linearization.

Before we prove Theorem 1, we will need two important results from real analysis.
Lemma 1 (Monotone Convergence Theorem). Consider the sequence {xg,x1,...} C R.

o [fxg >z > ... (monotonically decreasing), and xy > a for all k (bounded below), then the
sequence converges, and lim;_,o x; = inf;>q 4.

o I[fxyg < x < ... (monotonically increasing), and xy < b for all k (bounded above), then the

sequence converges, and lim;_,~ T} = Sup;~q t.
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The Monotone Convergence Theorem (MCT) is a sufficient condition for the existence of a limit.
Of course, it is possible for non-monotone sequences to have limits.



Lemma 2 (Extreme Value Theorem). Suppose S € R" is closed and bounded and f : S — R is
continuous. Then f achieves a minimum and a mazximum on S.

To understand how the Extreme Value Theorem (EVT) manifests itself, consider f(z) = 1/x.

e If we pick S = (0,1), then f has no maximum on S; we can make f(x) as large as we like by
picking z closer to 0. S is not closed so the EVT does not apply.

e If we pick S = [1,00), then f has no minimum on S; we can f(z) as small as we like by picking
larger x. S is not bounded so the EVT does not apply.

o If we pick S = [—1,1], then f has no minimum or maximum on S because of the asymptote
at x = 0. f is not continuous on S, so the EVT does not apply.

e If we pick S =[1,2], then f has both a minimum and a maximum. The EVT applies because
S is closed and bounded, and f is continuous on S.

The EVT is only a sufficient condition for the existence of extrema. For example, it’s possible to
violate all the requirements of EVT and still attain a maximum and/or minimum value.

2 Proof of Theorem 1

From Item (ii), the sequence V(xq), V(x1), V(22),... is a decreasing sequence and from Item (i), it
is bounded below by zero. By the MCT, this sequence converges to a limit. Let o := limy_, oo V' (2¢).
We already know a > 0. We will now prove that o = 0 by way of contradiction.

Suppose that a > 0. Consider the set S := {z € R" | a < V(z) < V(z0)}. This set is closed and
bounded. To see why, we have from Item (i) that V(z) < V(z¢) implies ¢(]|z||) < V(zp) and
therefore ||z|| < ¢~ 1(V(z0)). So S is contained inside a ball of radius ¢~*(V (z0)) and is therefore
bounded.! S is closed because both endpoints in S are included and V is a continuous function.
Apply the EVT to the continuous function V(f(z)) — V(z) over the set S.2 Let the maximum of
this function over S be . Since a > 0, all points in S satisfy V(z) > 0, and therefore z # 0. Since
Item (ii) holds strictly, we conclude that 5 < 0. For any ¢ > 0, we have:

V(z) =V(zo) + > (V(zr) = Vi(wr—1)) < Viwo) + 1B (2)
k=1

Since 8 < 0, if we make t sufficiently large, we can make the right-hand side of Eq. (2) negative,
which would imply that V' (z;) < 0, a contradiction. Consequently, our supposition that o > 0 was
incorrect, and therefore o = 0, and lim;_,o V' (2¢) = 0. By the definition of the limit, we have that
for any € > 0, there exists a T' > 0 such that for all ¢ > T', we have V(z;) < ¢(¢). Applying Item (i),
this means ¢(||z¢||) < ¢(e), and therefore ||z;|| < e. Consequently lim;_,oc z; = 0. [ |

!This is where we use the fact that ¢ is radially unbounded. Without this, ¢ may not be invertible, and we could
end up with an unbounded S.
2Here, we used the fact that f and V are continuous, therefore V(f(z)) — f(2) is a continuous function of z.



3 Exponential stability

We say a fixed point z, of Eq. (1) is globally exponentially stable if there exists ¢ > 0 and
p € (0,1) such that for any initial condition xg € R",

lz: — x4 || < cl|zo — 24| P for all ¢ > 0.

Global exponential stability is stronger than global asymptotic stability, because not only do we
have lim;_,o 2+ = T4, but we also guarantee convergence at an exponential rate. A sequence such
as xy = 1/t converges to zero asymptotically, but not exponentially.

We can modify the assumptions of Theorem 1 to achieve exponential convergence.

Theorem 2. Consider the dynamical system (1). Suppose the origin is a fized point, and there
exists a function V : R™ — R, satisfying

(i) There exists p > 0 and o, 8 > 0 such that o||z||P < V(x) < B||z||P for all z € R™.
(i1) There exists 0 < p < 1 such that V(f(x)) — pV(z) <0 for all z # 0.
Then, the origin is globally exponentially stable

Proof. Applying Items (i) and (ii), we have:
allze|” < V(ze) < pV(zi1) < -+ < p'V(0) < BllwolPp"-

Rearranging this inequality, we obtain

el < (2)" ol (07)"

so the origin is globally exponentially stable. |
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