Lyapunov functions

v.1.0 (11.19.2022)

1 Problem setting and statement

Let $x_t \in \mathbb{R}^n$. Consider a dynamical system of the following form and define some new terms.

$$x_{t+1} = f(x_t) \tag{1}$$

- **Fixed point:** We say that x_{\star} is a fixed point of Eq. (1) if $f(x_{\star}) = x_{\star}$. So if x_t ever reaches x_{\star} , it will stay there for all subsequent t.
- Global asymptotic stability: We say that the point x_{\star} is globally asymptotically stable if for any $x_0 \in \mathbb{R}^n$, we have $\lim_{t\to\infty} x_t = x_{\star}$.
- Class KR function: We say that a function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ is of class KR, written $\phi \in KR$, if ϕ is continuous, strictly increasing, and $\phi(0) = 0$. Additionally, ϕ is radially unbounded, i.e., $\lim_{p\to\infty} \phi(p) = \infty$. Class KR functions are invertible $\phi \in KR \iff \phi^{-1} \in KR$.

Here is a global asymptotic stability result.

Theorem 1. Consider the dynamical system (1). Suppose f is continuous, the origin is a fixed point, and there exists a continuous function $V : \mathbb{R}^n \to \mathbb{R}_+$ satisfying

- (i) V(0) = 0 and there exists $\phi \in KR$ such that for all $x \in \mathbb{R}^n$, we have $V(x) \ge \phi(||x||)$.
- (ii) V(f(x)) V(x) < 0 for all $x \neq 0$.

Then, the origin is globally asymptotically stable

A function V satisfying the conditions in Theorem 1 is called a Lyapunov function.

This approach of finding a Lyapunov function V to prove stability of a dynamical system is called Lyapunov's $direct\ method\ (a.k.a.\ Lyapunov$'s second method). This is in contrast with Lyapunov's $indirect\ method\ (a.k.a.\ Lyapunov$'s first method), which is a way of deducing stability of a nonlinear system by studying properties of its linearization.

Before we prove Theorem 1, we will need two important results from real analysis.

Lemma 1 (Monotone Convergence Theorem). Consider the sequence $\{x_0, x_1, \dots\} \subseteq \mathbb{R}$.

- If $x_0 \ge x_1 \ge \dots$ (monotonically decreasing), and $x_k \ge a$ for all k (bounded below), then the sequence converges, and $\lim_{t\to\infty} x_t = \inf_{t>0} x_t$.
- If $x_0 \le x_1 \le \dots$ (monotonically increasing), and $x_k \le b$ for all k (bounded above), then the sequence converges, and $\lim_{t\to\infty} x_t = \sup_{t\ge 0} x_t$.

The Monotone Convergence Theorem (MCT) is a sufficient condition for the existence of a limit. Of course, it is possible for non-monotone sequences to have limits.

Lemma 2 (Extreme Value Theorem). Suppose $S \in \mathbb{R}^n$ is closed and bounded and $f: S \to \mathbb{R}$ is continuous. Then f achieves a minimum and a maximum on S.

To understand how the Extreme Value Theorem (EVT) manifests itself, consider f(x) = 1/x.

- If we pick S = (0, 1), then f has no maximum on S; we can make f(x) as large as we like by picking x closer to 0. S is not closed so the EVT does not apply.
- If we pick $S = [1, \infty)$, then f has no minimum on S; we can f(x) as small as we like by picking larger x. S is not bounded so the EVT does not apply.
- If we pick S = [-1, 1], then f has no minimum or maximum on S because of the asymptote at x = 0. f is not continuous on S, so the EVT does not apply.
- If we pick S = [1, 2], then f has both a minimum and a maximum. The EVT applies because S is closed and bounded, and f is continuous on S.

The EVT is only a sufficient condition for the existence of extrema. For example, it's possible to violate all the requirements of EVT and still attain a maximum and/or minimum value.

2 Proof of Theorem 1

From Item (ii), the sequence $V(x_0), V(x_1), V(x_2), \ldots$ is a decreasing sequence and from Item (i), it is bounded below by zero. By the MCT, this sequence converges to a limit. Let $\alpha := \lim_{t\to\infty} V(x_t)$. We already know $\alpha \geq 0$. We will now prove that $\alpha = 0$ by way of contradiction.

Suppose that $\alpha > 0$. Consider the set $S := \{z \in \mathbb{R}^n \mid \alpha \leq V(z) \leq V(x_0)\}$. This set is closed and bounded. To see why, we have from Item (i) that $V(z) \leq V(x_0)$ implies $\phi(\|z\|) \leq V(x_0)$ and therefore $\|z\| \leq \phi^{-1}(V(x_0))$. So S is contained inside a ball of radius $\phi^{-1}(V(x_0))$ and is therefore bounded. S is closed because both endpoints in S are included and S is a continuous function. Apply the EVT to the continuous function V(f(z)) - V(z) over the set S. Let the maximum of this function over S be S. Since S is a conclude that S is closed because both endpoints in S satisfy S is closed because both endpoints in S satisfy S is closed because both endpoints in S satisfy S is closed because both endpoints in S satisfy S is closed because both endpoints in S satisfy S be S. Since S is concluded that S is closed because both endpoints in S satisfy S is closed because both endpoints in S satisfy S is contained in S be S. Since S is contained in S is closed because both endpoints in S be S in S be S. Since S is contained in S is closed because both endpoints in S be S in S is closed because both endpoints in S is closed and S in S

$$V(x_t) = V(x_0) + \sum_{k=1}^{t} (V(x_k) - V(x_{k-1})) \le V(x_0) + t\beta$$
 (2)

Since $\beta < 0$, if we make t sufficiently large, we can make the right-hand side of Eq. (2) negative, which would imply that $V(x_t) < 0$, a contradiction. Consequently, our supposition that $\alpha > 0$ was incorrect, and therefore $\alpha = 0$, and $\lim_{t\to\infty} V(x_t) = 0$. By the definition of the limit, we have that for any $\varepsilon > 0$, there exists a T > 0 such that for all $t \ge T$, we have $V(x_t) < \phi(\varepsilon)$. Applying Item (i), this means $\phi(||x_t||) < \phi(\varepsilon)$, and therefore $||x_t|| < \varepsilon$. Consequently $\lim_{t\to\infty} x_t = 0$.

¹This is where we use the fact that ϕ is radially unbounded. Without this, ϕ may not be invertible, and we could end up with an unbounded S.

²Here, we used the fact that f and V are continuous, therefore V(f(z)) - f(z) is a continuous function of z.

3 Exponential stability

We say a fixed point x_{\star} of Eq. (1) is **globally exponentially stable** if there exists c > 0 and $\rho \in (0,1)$ such that for any initial condition $x_0 \in \mathbb{R}^n$,

$$||x_t - x_{\star}|| \le c ||x_0 - x_{\star}|| \rho^t$$
 for all $t \ge 0$.

Global exponential stability is stronger than global asymptotic stability, because not only do we have $\lim_{t\to\infty} x_t = x_*$, but we also guarantee convergence at an exponential rate. A sequence such as $x_t = 1/t$ converges to zero asymptotically, but not exponentially.

We can modify the assumptions of Theorem 1 to achieve exponential convergence.

Theorem 2. Consider the dynamical system (1). Suppose the origin is a fixed point, and there exists a function $V : \mathbb{R}^n \to \mathbb{R}_+$ satisfying

- (i) There exists p > 0 and $\alpha, \beta > 0$ such that $\alpha ||x||^p \le V(x) \le \beta ||x||^p$ for all $x \in \mathbb{R}^n$.
- (ii) There exists $0 < \rho < 1$ such that $V(f(x)) \rho V(x) \le 0$ for all $x \ne 0$.

Then, the origin is globally exponentially stable

Proof. Applying Items (i) and (ii), we have:

$$\alpha ||x_t||^p \le V(x_t) \le \rho V(x_{t-1}) \le \dots \le \rho^t V(x_0) \le \beta ||x_0||^p \rho^t.$$

Rearranging this inequality, we obtain

$$||x_t|| \le \left(\frac{\beta}{\alpha}\right)^{1/p} ||x_0|| \left(\rho^{1/p}\right)^t$$

so the origin is globally exponentially stable.